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SUMMARY

Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the

flow produced by the exhaust of a subscale H2/O 2 fueled bi-propellant rocket engine.

Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using

injection seeded XeC1 and KrF excimer lasers, respectively. The flow is produced with hydrogen

and oxygen reacting at acombustor chamber pressure of 5 atm which then exhausts to the ambient.

The hydroxyl concentration in the exhaust flow is approximately 8%. Fluorescence images

obtained by pumping the Q_(3) transition in the (0,0) band exhibited very high signals but also

showed the effect of laser beam absorption. To obtain images when pumping the P_(8) transition in

the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high

intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order

unity or less when measured on a per pixel basis.

INTRODUCTION

Measurement techniques based on planar laser-induced fluorescence (PLIF) imaging provide

a powerful tool for the study of complex reacting gaseous flows. In addition to the wide use of

PLIF for flow visualization, there is also a growing body of work which has concentrated on

developing PLIF spectroscopic strategies to measure species concentration, temperature, pressure

and velocity _. The present effort is directed towards the evaluation of these techniques for

application to flows produced by hydrogen-fueled rocket engines. Poor injector mixing, flow

stratification, and excess fuel film cooling in these engines represent a performance loss which

reduces the engine specific impulse. High oxidizer concentrations near the thrust chamber wall and

in the nozzle, which result from poor mixing or injector maldistribution, can result in reduced

engine life.
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Cold flow imagingstudieshavebeenperformedusingparticulates*or moleculartracers(e.g.
iodine or NO). However,for actualengineevaluation,a nascentmolecularspeciesis required.Of
particularinterestis the hydroxyl radical; theconcentrationdistributionof OH maybeviewedasa
zero'th order indicator of mixture fraction in the high temperaturegases.Further, OH is an
excellentcandidatefor PLIF temperatureandvelocity imaging2.In thefollowing wedescribethe
resultsof OH imagingexperimentsusing(0,0)and(3,0)excitationperformedwith injection seeded
XeCL andKrF excimer lasers,respectively.The measurementswere madein the exit planeof a
subscaleO2/H2 engine. The high temperature,supersonicflow studied here is similar to the
conditionsencounteredin largescaleengines.

For an optically thin medium,the fluorescencesignal on a per laser pulse basismay be
writtenas,

Sf = CoptfB(T ) Ep B g_aZa no gD A/(A+Q+V+P) (1 - H(EpB)) (1)

Here Copt is a collection of constants which describe the optical system, fa is the Boltzman fraction

in the ground ro-vib state, Ep is the laser energy, B is the Einstein coefficient for absorption, 7_ no is

the number density of the absorbing species, gD is the detector spectral response fraction, and P is

the excited state predissociation rate. The other terms in equation 1 must be thought of as functions

of field variables F; that is they depend on the local distribution of temperature, pressure and

perturbing species mixture fraction. Thus g_d(F-.) is the convolution of the absorption and laser

spectral profiles which also depends on velocity through the molecular Doppler-shift, A(E) is the

effective spontaneous emission rate, Q(.E) is the collisional quenching rate, V(F) is the excited state

vibrational transfer rate and H(EpB,E,Xla,) is a correction which goes to zero in the limit of weak

pumping.

By using various pump/detection strategies, different terms in equation 1 can be made

dominant. Here the cases of particular interest are termed 'predissociation' and 'quenching'

dominated. These are to first order

Sf oc fB(T ) )_a no ; P >> A+Q+V

Sf oc fB(T) T a X_ ; P = 0, Q+V >> A
(2)

In both cases, careful selection of the ro-vib transition can be used to minimize the stray

temperature dependence giving images that primarily represent OH number density or mixture

fraction, respectively. The predissociation limit is attractive since the infuence of collisional effects

can be removed 3. For flow visualization studies, these are adequate descriptions of how the signal

depends on field variables. Even when the image has a secondary dependence on temperature or

mixture fraction such data can still be used effectively to study flowfield topology 4. To extend the

technique to a 'quantitative' measurement requires a much more detailed approach to both the

* D. B. Makel and I. M. Kennedy, 'Cold flow mixing measurements for a swirl triplet liquid

rocket gas generator system,' (submitted to AIAA Journal of Propulsion and Power, 1992).
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fluorescencemodel andto imagingsystemperformance5.We will addresssomeof these issues in

the discussion below.

EXPERIMENTAL APPARATUS

Sets of images using single laser shot PLIF of OH were obtained using two different

excitation strategies. The first scheme uses the injection seeded XeCI excimer (Lambda Physik,

EMG 150 T MSc) to excite the Qt(3) transition in the OH A2Z<--X21-I (0,0) band. Broadband

detection was employed and the images were recorded with an f/4.5 lens (Nikon, UV-Nikor) on a

custom-built gated intensified CCD array operating in an RS-170 format. Images were digitized to

8-bits with a Data Translation DT2851 frame grabber in an PC/AT computer. This technique has

been used before for reacting flow studies 4 and for PLIF velocity imaging 2. The second scheme

uses the same laser operated on KrF to excite the PI(8) transition in the OH A2Z_--X2I-I (3,0) band.

These measurements were made with the same camera now equipped with a long pass filter (1 mm

Schott WG-280) which was required to reject Rayleigh scattering and a custom built f/1.2 imaging

lens. PLIF measurements of OH using this later method have been reported by Andresen et al. 6 and

single point LIF measurements have been reported by Pitz et al. 7

The experimental setup is shown in figure 1. The laser and camera were operated in a 60 Hz

mode. The laser beam was expanded into a 10 cm high sheet which was positioned to bisect the

engine exhaust plume. The sheet thickness was estimated to be 0.4 mm full-width at 1/e 2. Line

tuning was optimized using a propane torch during pretest and checked post-test. A schematic of

the subscale engine (5 lbf motor with an expansion ratio of 1.8:1) is shown in figure 2. The engine

consists of an integral spark ignitor/injector, a water cooled combustion section, and a water-cooled

nozzle. The oxidizer is injected on the centerline through the gap formed by the ignitor electrode

and the engine body. The fuel is injected radially into the oxidizer flow and downstream of the

spark gap. The combustion chamber is designed with a turbulence ring to promote mixing. The

nozzle used for the present study has a 5 mm throat made of a ZrCu alloy and the external nozzle

body is tapered to minimize interference to the laser sheet and imaging optics. The combustion

chamber can be operated at pressures up to I0 atm producing flow Mach numbers in excess of 2 in

the exit plane.

The flow conditions used for the present study were: P0= 72psia, f(O2) = 182 SLPM,

f(H2) = 182 SLPM. These give a mixture ratio of 8.0 and exit plane conditions calculated to be:

Tst_tic = 2670 K, Psi, tic = 8 psia, v -- 2560 m/s and M = 1.95. Species mole fractions in the exit plane

were calculated from equilibrium to be: 0.08, 0.70, 0.03, 0.11, 0.04, and 0.02 for OH, H20, 02, H2,

H and O, respectively. During the runs the oxygen flowrate was metered using a mass flow

controller and the hydrogen flowrate was controlled with a sonic orifice. Engine temperatures and

pressures were digitized and stored on a computer. Chamber ignition was performed with an

oxygen lead to minimize the exhaust of unreacted hydrogen. Nitrogen flows controlled by check

valves were used to automatically purge the engine at start-up and shut-down.
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EXPERIMENTAL RESULTS

Figure3 is a conventionaltime-exposurephotographof theexhaustplumewhich showsthe
diamond shockstructurecharacteristicof an over-expandedjet. The luminosity of the plume is
apparentto the eye for over 25cm downstreamof the nozzle, although the last visible shock

diamondis seenat approximately7.5cm downstream.Figure4 showstwo representativesingle-
shotPLIF imagesobtainedby using (0,0)excitation.Thesignal levelsarevery high andrequired
the useof a low intensifiergain to preventsaturationof the CCD camera.The high signal level
becomesapparentwhenoneconsidersthat resonantdetectionis beingusedthus:the bright spots
which turn to black at their centerare the result of scatteringfrom water droplets which are
regularlyejectedby theengine;while the faint blur seenat the bottomof the imagesis thenozzle

body which scatterssomestray laserlight (the lasersheetbeingcut-off at approximately0.5 cm
abovetheengine).Onemayalsonoticea systematicleft-to-rightattenuationin thesignal,theresult
of a largeabsorptioncoefficientfor theQ1(3)line (of order 100cm! atm-l).Theseimagesarequite
similar to that which would beobtainedin a simplezero-heat-releasereactivemixing experiment.
Downstreamof thepotentialcore, intrusionsof ambientair areseento cutcompletelyacrossthejet
which often exhibit behavior similar to 'flame-tip' burnout or separation.No evidenceof the
diamondshockpatternis seenin theseimagessincetheprimary signaldependenceis onOH mole
fractionandtemperature,the latterbeingonly slightly modulatedin theweakshockspresentin this
flow.

Figure 5 shows two representativesingle-shot PLIF images obtained by using (3,0)
excitation,The differencefrom the previousdataset is dramatic.The recordedsignal levels are
exceptionallylow andasa resultaresubjectto strongsignal shotnoise.This is apparentwhenone
considersthat theseimageswere obtainedusing a microchannelplate (MCP) gain in excessof
1500e/e', thusthepatternin thebackgroundis likely theresultof thermalemissionfrom theMCP.

Further it is possibleto againseeevidenceof theenginenozzle,this beingtheresult of secondary
scatteringof the OH emissionor scatteredlaserlight ascollectedthrough a filter attenuationof
order 105. A 15-frameaverageof imagestakenwith (3,0)excitation,givenin figure 6, showssome

evidenceof the diamondshockstructuresasthesignalis now directly dependenton totaldensity.
Howeverthenoiselevel in thisaveragedimageis still of order20%peak-to-peakof thetotal signal
variation seenacrossthe first diamondshock(seefigure 7). It is alsoof note that whenthe long-
passfilter was removedtheRayleighscatteringfrom the ambientroom air overwhelmedthe OH

PLIF signal,and it waspossibleto readily observethe drop in Rayleighsignal in the low density
engineexhaustgases.

DISCUSSION

For the (0,0) pumping case,an f/4.5 lens was used and the intensifier MCP gain was

approximately 50 e-/e-. While for the (3,0) pumping case an f/1.2 lens was used and the intensifier

gain was approximately 1500 e-/e-. The fraction of the v'=3 emission collected through the
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longpassfilter wasestimatedby a weightedsumof the productof filter spectraltransmissionand
bandlifetimesandfoundto be78%.We find theratioof themeasuredsignalsonanequalimaging

systembasisto be Sf(0,0_/St_3,0)= 350. Using the predictions given by Seitzman s and adjusting the

(0,0) quenching rate to reflect the conditions studied here (Q(H20)= 1.68/ns and Q(I-I)= 0.19/ns;

see Appendix A) we find a value of Sf(0.o)/Sft3,0)= 524 which is in reasonable agreement with the

experimental observation. We expect the measured value to be somewhat lower than the prediction

since some degree of depopulation of the ground-state with (0,0) pumping should occur in the

experiment.

The quality, that is the spatial resolution and signal-to-noise performance, of the images

obtained in these experiments has a direct impact on the ability to use such data for quantitative

measurements. In both of the cases described above the image data is in the signal-shot-noise limit.

Thus the signal-to-noise ratio on a per-pixel basis is given by S/N = _/(rl Sf / _(G)), where 11 is the

detector quantum efficiency and 1<is the intensifier noise factor 5. The useful signal dynamic range,

D s, is defined to be the ratio of that signal which produces a non-recoverable saturation to that

signal which gives an S/N of unity, Ds ---C, S(G) / (G r(G)) 5. Here C, is a constant which depends on

the details of the camera system, S is an MCP saturation function and G is the MCP electron gain.

Values for the conditions used in the present experiment were evaluated using a model for the

image and signal transfer function of intensified cameras 5. For the (0,0) pumping experiment we

find _: = 3.7 and D_ _- 114. In this case the S/N could have actually been improved by a slight

increase in lens f-number with a commensurate increase in MCP gain. For the case of (3,0)

pumping we find 1<= 2.2 and D_ = 4. For this later case the severe compression in dynamic range

would preclude a quantitative measurement even if the S/N were improved. The modulation

transfer function, which quantifies the ability of the imaging system to transfer object contrast to

the image, for the fast lens used for the (3,0) experiment is calculated to be significantly worse than

that obtained in the (0,0) experiment. This 0bse_ation is with regard to both the blur spot radius

and to the shape of the function at intermediate spatial frequencies. Even if the S/N were improved

in the (3,0) experiment, significant systematic errorg would occur in taking gradients to obtain scalar

dissipation or using ratiometric image processing to obtain temperature as a direct result of the

contrast reduction.

In the present experiment, the OH is found in a bath composed mostly of water vapor,

however the effect of collisions with the radicals cannot be disregarded. For the conditions at the

nozzle exit the predominant electronic quencher is water followed by atomic hydrogen and the

conventional view would be that vibrational energy transfer (VET) could be neglected. However,

OH is present at 8% and both OH-A and OH-X states have large dipole moments; thus a noticeable

VET rate is expected as a result of 'near-resonant' electronic energy transfer (e.g.

OH °t + OH --4 OH t + OH" where the asterisk denotes electronic excitation and the dagger denotes

vibrational excitation) 9. This process can be quite effective and has been observed in NO 1°. Using

the model of Cross and Gordon _ we estimate a contribution to the total VET rate of
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V3= V32+ V31+ V30-_0.12/nsdueto collisionswith OH X2yI at theenginenozzleexit conditions.
Upon mixing with the ambientair thetemperatureandradicalpopulationin theexhaustproducts
will drop and Nz and02 will be introducedascollisionpartners.For v'=3 andconditionsfound in

H2/airpost flameproductsat atmosphericpressure,weestimatethatthetotalVET ratedueto N2to
benearequalto theelectronicquenchingratedue to HE0.Evidencefor effectiveVET from v'=3
can be seen in OH fluorescencedispersionspectraobtained in laminar H2/O2 and butane/air
flamest. For thebutaneflame,emissionin the (0,0)bandis larger thanemissionin the (1,1)band
which is noticeablylarger thanemissionfrom R2(6)(3,3).This result is likely due to thepresence
of CO2 and suggeststhat multiple VET stepsareoccurring. In the H2/O2 flame, emission in the

(0,0) and (1,1) bands is near equal and both are smaller than emission from R2(6) (3,3). The later

result is consistent with the measurement having been made in a laminar flame with near

equilibrium OH concentrations and without the presence of N 2.

For the range of 1400 K to 2700 K we do not expect a strong variation in the v'=0 quenching

rate for the ambient air or the engine exhaust products except as occurs due to the loss of the

atomic hydrogen as a collision partner. We estimate that the effective quenching cross-section will

decrease by no more than 10% from conditions at the nozzle exit plane to conditions of an equal

mixture of frozen exhaust products with room air. Thus the variation in signal using (0,0) pumping

depends directly on OH mole fraction and on fa(T)/_T. This latter function goes approximately as

T-1.4 and will increase nearly three-fold in going from 2700 K to 1400 K. A much better choice for

the study would have been a value of N"= 10 which would have flattened out this temperature

dependence. However this is not possible using the XeCI excimer laser. An alternative approach

would be to use a doubled dye laser to pump the (1,0) band or to use the KrF excimer as Raman

shifted in D 2 to pump the (2,0) band. The later approach should provide approximately 25 rnJ of

useable energy from 267.7 to 268.9 nm thus access to strong transitions with near optimal values

for N" in the (2,0) band as well as freedom from radiation trapping effects.

Collisional effects play an important role in the description of the dependence of the

fluorescence signal on the distribution of flow scalars. Pumping to predissociated states of OH does

yield a reasonably well-defined dependence, however, the signal levels are too low for single-shot

PLIF imaging. When this technique is applied to flows that produce a noticeable VET rate (e.g.

vitiated air) the signal will be further reduced by the need to reject emission from v'_: 3.

Predissociated techniques can be successful for single-shot imaging and for relatively small flows

when the target molecule is a major species and exhibits a large absorption cross-section (e.g.

NO D2]_-X2I-I as a flow tracer or O2 B3_-X3_E). Since OH is generally a minor species and the

predissociated states exhibit a relatively small absorption cross-section, PLIF using predissociated

states of OH is probably relegated to time-averaged imaging. In many cases, the total cross-section

for electronic quenching of OH A2E(v ' < 3) will contribute a relatively weak dependence on flow

scalars, although a reasonably well-defined dependence can be elucidated. In either case,

1" (private communication: Dr. P. Andresen, Max-Planek Inst, Gtttingen, 1989)
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quantitativemeasurementswill needto bebasedon ratiometricimageprocessing,which to a large
extentcancancel-outthesecollisionaleffects2.

CONCLUSIONS

Planarlaser-inducedfluorescenceimaging of OH hasbeenconductedin the exhaustof an
H2/O2fueled rocket engine.Testshavebeenmadeusing bothOH (0,0) and (3,0) excitation,the
former being collisional quenchingand the latter predissociationdominated.The measurements
supporta view that single-shotPLIF measurementsof OH usingpredissociatedexcitedstateswill
not yield sufficient signal for flow visualization studies much less quantitative imaging. As
expectedQl(3)(0,0) excitation was found to be subject to beam attenuationand presumably
radiationtrapping.For flow studiesof small enginesuseof the weakerR2(3)(0,0) transitionwill
provide a convenient means to reduce laser beam attenuation to acceptablelevels. For the
conditionsexpectedin engineexhaustsradical specieshavebeenidentified ashavinga significant
role in collisional dexcitiation; specificallyOH asa VET partnervia 'near-resonant'exchangeand

atomic hydrogenas a quenchingpartner.To avoid beamattenuation,to minimize the effect of
radiationtrappingandto reducethedependenceon temperature,a schemebasedon pumpingthe
(2,0) bandhasbeenproposed.This may be convenientlyperformedby using D2 Ramanshifted
radiationfrom theinjectionseededKrF excimerlaser.
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APPENDIX A

Collisional effects in OH A2Z have been studied in some detail 12. However, there is only

limited experimental data for temperatures above 1200 K and little or no data for v' > 1. Thus we

resort to a model of the process to extrapolate the experimental data base to the conditions of

interest. This model is based on the assumption that the gross behavior of quenching and

vibrational relaxation in OH A2Z is described by long lived collision-complexes 13. The rate for

process W (electronic quenching or vibrational relaxation), due to collision parmers p, is given by

W = no <VOH> pZ Xr, aw.p(T,N') _(l+moH/mp)
(A.1)

Here (_ is the species and process specific thermally averaged cross-section, which is a function of

temperature and rotational level. Taking a classical approach, the cross-section is given by
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tJw = n _ _ vfB(v,O) t Pw(b,v,O) db I dO dv / <v> (A.2)v @

Here Pw is the probability of process W occurring upon collision as a function of the collision

impact parameter b, the relative velocity v, and relative molecular orientation O. In the model we

take Pw to be a product of the probability for capture within a barrier formed by centripetal

repulsion and molecular attraction, and a constant probability for the specific process, PO or Pv. We

take the attractive forces to be given by point multipole expansions. With these assumptions

equation (A.2) reduces to a 6-fold nested integral which contains a set of transcendental equations.

Previous approaches to a solution have taken the collision partners to be in the orientation most

favorable for dipole-dipole interactions; this reduces the problem to a single integral over a

transcendental equation TM. We find that by neglecting the quadrapole-quadrapole and higher

multipole terms and by transforming to a radial integral metric the problem reduces to a three-fold

integral over an explicit function and can be easily evaluated.

The present formulation does not introduce a direct dependence on rotational level and the

model does not provide an absolute value for the cross-section. Thus we assume that: solutions for

OH in the most attractive orientation correspond to the case of N" = 0; and solutions for OH with a

geometrically averaged potential correspond to the case of N" >> 1. Analytical perturbation

solutions in these limits suggest the functional form,

(_(T,N') -- c(Tr,0) y-pl ((BN, + b y)/(l + b)) p2 (A.3)

where y - T/T r and BN,=I for N'=0 and goes to zero for large N'. The coefficients pl, p2 and b are

collision partner specific and are determined from fits to the results of the full simulation, where

the inputs are molecular electrical properties. Using the suggestion of Crosley 12we take Br_, = exp(-

aN'(N'+I)). Experimental data at Tr = 300 K are used to provide the coefficients o(T,0) and a,

which are collision parmer and process specific.

Simulations have been evaluated for all of the major collision partners present in the H2/air

combustion system. Comparisons to the available experimental data are favorable for all species

except for electronic quenching by N 2 although VET by N 2 is well described. One possible

explanation is that the necessary mixing of internal states required for quenching by N2 introduces

a strong orientation dependence. In the present model this detail has be relegated to the constant PO"

By using N2 quenching data for N'_>3 to provide the fit we find a significantly better match to

measurements at 1200 K. Compared to the use of the 'optimum dipole' result 15, this formulation

provides a significant improvement in the prediction of high temperature behavior for all of the

species. Full tabulation of these results is beyond the scope of the present paper but we give as

example the terms for quenching OH A2y,(v'--0) by H20: o0=94.1, pl =0.667, a=0.019,

b = 0.21, and p2 = 0.33.
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Figure 2. Schematic of the subscale 5 Ibf thrust rocket engine.
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Figure 3. Convel_tional time-exposure photograph of the natural emission from the engine exhaust
plume.

Figure 4. Two single-shot PLIF images of OH in the engine exhaust plume, obtained by pumping
the (0,0) band.
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Figure 5. Two single-shot PLIF images of OH in the engine exhaust plume, obtained by pumping
the (3,0) band.
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Figure6. Fifteenframeaverageimageof OH in theengineexhaustplume,obtainedby pumping
the(3,0)band.
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Figure 7. Pixel intensity variation taken from figure 6 and along the axis of the engine exhaust
plume. The positions of the shock diamonds have been indicated.
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